ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТАЛЬ ГОРЯЧЕКАТАНАЯ ДЛЯ АРМИРОВАНИЯ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

Технические условия

ΓΟCT 5781-82

ИЗДАТЕЛЬСТВО СТАНДАРТОВ

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТАЛЬ ГОРЯЧЕКАТАНАЯ ДЛЯ АРМИРОВАНИЯ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

Технические условия

ГОСТ 5781-82

Hot-rolled steel for reinforcement of ferroconcrete structures. Specifications

Настоящий стандарт распространяется на горячекатаную круглую сталь гладкого и периодического профиля, предназначенную для армирования обычных и предварительно напряженных железобетонных конструкций (арматурная сталь).

В части норм химического состава низколегированных сталей стандарт распространяется также на слитки, блюмсы и заготовки.

(Измененная редакция, Изм. № 4).

1. КЛАССИФИКАЦИЯ И СОРТАМЕНТ

- 1.1. В зависимости от механических свойств арматурная сталь подразделяется на классы A-I (A240), A-II (A300), A-III (A400), A-IV (A600), A-V (A800), A-VI (A1000).
- 1.2. Арматурная сталь изготовляется в стержнях или мотках. Арматурную сталь класса A-I (A240) изготовляют гладкой, классов A-II (A300), A-III (A400), A-IV (A600), A-V (A800) и A-VI (A1000) периодического профиля.

По требованию потребителя сталь классов A-II (A300), A-III (A400), A-IV (A600) и A-V (A1000) изготовляют гладкой.

1.1, 1.2. (Измененная редакция, Изм. № 5).

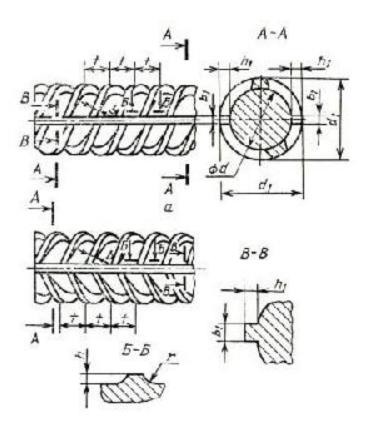
- 1.3. Номера профилей, площади поперечного сечения, масса 1 м длины арматурной стали гладкого и периодического профиля, а также предельные отклонения по массе для периодических профилей должны соответствовать указанным в табл. 1.
- 1.4. Номинальные диаметры периодических профилей должны соответствовать номинальным диаметрам равновеликих по площади поперечного сечения гладких профилей.

Таблица 1

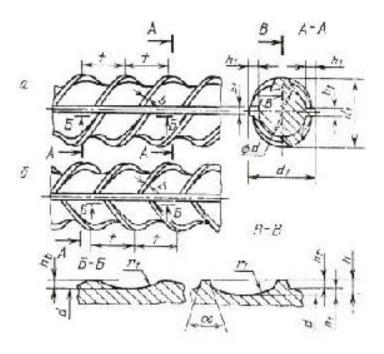
Номер профиля	Площадь	Масса 1 м профиля				
(номинальный диаметр стержня d_H)	поперечного сечения стержня, см ²	Теоретическая; кг	Предельные отклонении, %			
6	0,283	0,222	+9,0			
8	0,503	0,395	-7,0			
10	0785	0,617	+5,0			

Номер профиля	Площадь	Масса 1 м	профиля
(номинальный диаметр стержня d_{H})	поперечного сечения стержня, см ²	Теоретическая; кг	Предельные отклонении, %
12	1,131	0,888	-6,0
14	1,540	1,210	
16	2,010	1,580	
18	2,540	2,000	
20	3,140	2,470	+3,0
22	3,800	2,980	-5,0
25	4,910	3,850	
28	6,160	4,830	
32	8,010	6,310	
36	10,180	7,990	+3,0
40	12,570	9,870	-4,0
45	15,000	12,480	
50	19,630	15,410	

Номер профиля	Площадь	Масса 1 м профиля				
(номинальный диаметр стержня d_H)	поперечного сечения стержня, см ²	Теоретическая; кг	Предельные отклонении, %			
55	23,760	18,650	+2,0			
60	28,270	22,190	-4,0			
70	38,480	30,210				
80	50,270	39,460				


(Измененная редакция, Изм. № 3).

1.5. Масса 1 м профиля вычислена по номинальным размерам при плотности стали, равной $7,85\times10^3$ кг/м 3 . Вероятность обеспечения массы 1 м должна быть не менее 0,9.


(Измененная редакция, Изм. № 3).

- 1.6. Предельные отклонения диаметра гладких профилей должны соответствовать <u>ГОСТ 2590-88</u> для обычной точности прокатки.
- 1.7. Арматурная сталь периодического профиля представляет собой круглые профили с двумя продольными ребрами и поперечными выступами, идущими по трехзаходной винтовой линии. Для профилей диаметром 6 мм допускаются выступы, идущие по однозаходной винтовой линии, диаметром 8 мм по двухзаходной винтовой линии.
- 1.8. Арматурная сталь класса A-II (A300), изготовленная в обычном исполнении, профилем, приведенным на черт. 1a, и специального назначения Ac-II (Ac300) профилем, приведенным на черт. 2a, должна иметь выступы, идущие по винтовым линиям с одинаковым заходом на обеих сторонах профиля.

Сталь класса A-III (A400), изготовляемая профилем, приведенным на черт. 16, и классов A-IV (A600), A-V (A800), A-VI (A1000) профилем, приведенным на черт. 16, 26, должна иметь выступы по винтовым линиям, имеющим с одной стороны профиля правый, а с другой - левый заходы.

Черт. 1

Черт. 2

Арматурную сталь специального назначения класса Ac-II (Ac300) изготовляют профилями, приведенными на черт. 1a или 2a.

Профиль, приведенный на черт. 2a, специального назначения изготовляется по согласованию изготовителя с потребителем. Форма и размеры профилей, приведенных на черт. 2a и 6, могут уточняться.

1.9. Размеры и предельные отклонения размеров арматурной стали периодического профиля, изготавливаемого по черт. 1a и δ , должны соответствовать приведенным в табл. 2, а по черт. 2a и δ - приведенным в табл. 3.

Таблица 2 Размеры, мм

Номер профиля (номинальный диаметр d _н)	d		h							
	Номин.	Пред. откл	Номин.	Пред. откл	d ₁	h1	t	b	bı	r
6	5,75		0,5	±0,25	6,75	0,5	5	0,5	1?0	0,75
8	7,5		0,73		9,0	0,75	5	0,75	1,25	1,1
10	9,3		1,0		11,3	1,0	7	1,0	1,5	1,5
12	11,0	+0,3	1,25		13,5	1,25	7	1,0	2,0	1,9
14	13,0	-0,5	1,25		15,5	1,25	7	1,0	2,0	1,9
16	15,0		1,5		18,0	1,5	8	1,5	2,0	2,2
18	17,0		1,5	±0,5	20,0	1,5	8	1,5	2,0	2,2

Номер	C	d	h	h						
профиля (номинальный диаметр $d_{\rm H}$)	Номин.	Пред. откл	Номин.	Пред. откл	d_I	h_I	t	b	<i>b</i> 1	r
20	19,0		1,5		22,0	1,5	8	1,5	2,0	2,2
22	21,0	+0,4	1,5		24,0	1,5	8	1,5	2,0	2,2
25	24,0	-0,5	1,5		27,0	1,5	8	1,5	2,0	2,2
28	26,5		2,0		30,5	2,0	9	1,5	2,5	3,0
32	30,5		2,0		34,5	2,0	10	2,0	3,0	3,0
36	34,5	+0,4	2,5	±0,7	39,5	2,5	12	2,0	3,0	3,5
40	38,5	-0,7	2,5		43,5	2,5	12	2,0	3,0	3,5
45	43,0		3,0		49,0	3,0	15	2,5	3,5	4,5
50	48,0		3,0		54,0	3,0	15	2,5	3,5	4,5
55	53,0	+0,4	3,0		59,0	3,0	15	2,5	4,0	4,5
60	68,0	1,0	3,0	±1,0	64,0	3,0	15	2,5	4,0	5,0
70	68,0	+0,5	3,0		74,0	3,0		2,5		5,5
80	77,5	-1,1	3,0		83,5	3,0	15	2,5	4,6	5.5

Примечание. По требованию потребителя предельные отклонения размера d_1 не должны превышать предельных отклонений d плюс удвоенные предельные отклонения h.

Таблица 3 Размеры, мм

Номер профиля (номинальный диаметр d_{H})	d		h										
	Номин.	Пред. откл.	Номин.	Пред.	d_{I}	h _I	hr	h_B	t	b	<i>b1</i>	r]	а, град
10	8,7		1,6	±0,5	11,9	1,6	0,6	1,0	10	0,7	1,5	11	
12	10,6		1,6		13,8	1,6	0,6	1,0	10	0,7	2,0	11	
14	12,5	+0,3	2,0		16,5	2,0	0,8	1,2	12	1,0	2,0	12	
16	14,2	-0,5	2,5		19,2	2,5	1,0	1,5	12	1,0	2,0	12	
18	10,2		2,5	+0,65	21,2	2,5	1,0	1,5	12	1,0	2,0	12	
20	18,2		2,5	-0,85	23,2	2,5	1,0	1,5	12	1,0	2,0	12	50
22	20,3	+0,4	2,5		25,3	2,5	1,0	1,5	12	1,0	2,0	12	
25	23,3	-0,5	2,5		28,3	2,5	1,0	1,5	14	1,2	2,0	14	
28	25.9		3,0		31,9	3,0	1,2	1,8	14	1,2	2,5	14	
32	29,8	+0,4	3,2	+1,0	36,2	3,2	1,2	2,0	16	1,5	3,0	14	

Номер	d		h										a,
профиля (номинальный диаметр $d_{\scriptscriptstyle H}$)	Номин.	Пред. откл.	Номин.	Пред. откл.	d_I	h_I	h _r	h_B	t	b	bı	rı	град
36	33,7	-0,7	3,5	-1,2	40,7	3,5	1,5	2,0	18	1,5	3,0	19	
40	37,6		3,5		44,6	3,5	1,5	2,0	18	1,5	3,0	19	

1.10. Относительные смещения винтовых выступов по сторонам профиля, разделяемых продольными ребрами, не нормируются.

Размеры, на которые не установлены предельные отклонения, приведены для построения калибра и на готовом профиле не проверяются.

1.11. Овальность гладких профилей (разность наибольшего и наименьшего диаметров в одном сечении) не должна превышать суммы плюсового и минусового предельных отклонений по диаметру.

1.9-1.11. (Измененная редакция, Изм. № 3).

1.12. Арматурную сталь классов A-I (A240) и A-II (A300) диаметром до 12 мм и класса A-III (A-400) диаметром до 10 мм включительно изготовляют в мотках или стержнях, больших диаметров - в стержнях. Арматурную сталь классов A-IV (A600), A-V (A800) и A-VI (A1000) всех размеров изготовляют в стержнях, диаметром 6 и 8 мм изготовляют по согласованию изготовителя с потребителем в мотках.

1.13. Стержни изготовляют длиной от 6 до 12 м:

мерной длины;

мерной длины с немерными отрезками длиной не менее 2 м не более 15 % от массы партии;

немерной длины.

В партии стержней немерной длины допускается наличие стержней длиной от 3 до 6 и не более 7 % от массы партии.

По согласованию изготовителя с потребителем допускается изготовление стержней от 5 до 25 м.

1.14. Предельные отклонения по длине мерных стержней должны соответствовать приведенным в табл. 4.

Таблица 4

Длина стержней, м	Предельные отклонения по длине, мм. при точности порезки					
	обычной	повышенной				
До 6 включ.	+50	+25				
Св. 6	+70	+35				

Стержни повышенной точности изготовляют по требованию потребителя.

1.15. Кривизна стержней не должна превышать 0,6 % измеряемой длины.

Примеры условных обозначений

Арматурная сталь диаметром 20 мм, класса А-ІІ (А300):

Арматурная сталь диаметром 18 мм, класса А-I (А240):

В обозначении стержней класса A-II специального назначения добавляется индекс с: Ac-II.

(Измененная редакция, Изм. № 4).

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Арматурную сталь изготовляют в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.
- 2.2. Арматурную сталь изготовляют из углеродистой и низколегированной стали марок, указанных в табл. 5. Марка стали указывается потребителем в заказе. При отсутствии указания марку стали устанавливает предприятие-изготовитель. Для стержней класса A-VI (A-1000) марки стали устанавливают по согласованию изготовителя с потребителем.

Таблица 5

Класс арматурной стали	Диаметр профиля, мм	Марка стали
A-I (A240)	6-40	Ст3кп, Ст3пс, Ст3сп
A-II (A300)	10-40	Ст5сп, Ст5пс
	10-80	1НГ2С
Ac-II (Ac300)	10-32	10ГТ
	(36-40)	
A-III (A400)	6-40	35ГС, 25Г2С
	6-22	32Г2Рпс
	10-18	80C
A-IV (A600)	(6-8)	

Класс арматурной стали	Диаметр профиля, мм	Марка стали
	10-32	20ХГ2Ц
	(36-40)	
	(6-8)	
A-V (A800)	10-32	23Х2Г2Т
	(36-40)	
A-VI (A1000)	10-22	22X2Г2AЮ, 22X2Г2P, 20X2Г2CP

Примечания:

- 1. Допускается изготовление арматурной стали класса A-V (A800). Из стали марок $22X2\Gamma2A$ Ю, $22X2\Gamma2P$ и $20X2\Gamma2CP$.
- 2. Размеры, указанные в скобках, изготовляют по согласованию изготовителя с потребителем.

(Измененная редакция, Изм. № 3, 4).

2.3. Химический состав арматурной углеродистой стали должен соответствовать ГОСТ 380-88, низколегированной стали - нормам, приведенным в табл. 6.

Таблица 6

Managara	Массовая доля элементов, %							
Марки стали	Углерод	Марганец	Кремний	Хром				
10ГТ	Не более 0,13	1,00-1,40	0,45-0,65	Не более 0,30				
18Г2С	0,14-0,23	1,20-1,60	0,60-0,90	Не более 0,30				
32Г2Рпс	0,28-0,37	1,30-1,75	Не более 0,17	Не более 0,30				
35ГС	0,30-0,37	0,80-1,20	0,60-0,90	Не более 0,30				
25Г2С	0,20-0,29	1,20-1,60	0,60-0,90	Не более 0,30				
20ХГ2Ц	0,19-0,26	1,50-1,90	0,40-0,70	0,90-1,20				
800	0,74-0,82	0,50-0,90	0,60-1,10	Не более 0,30				
23Х2Г2Т	0,19-0,26	1,40-1,70	0,40-0,70	1,35-1,70				
22Х2Г2АЮ	0,19-0,26	1,40-1,70	0,40-0,70	1,50-2,10				
22Х2Г2Р	0,19-0,26	1,50-1,90	0,40-0,70	1,50-1,90				
20Х2Г2СР	0,16-0,26	1,40-1,80	0,75-1,55	1,40-1,80				

Продолжение табл. 6

	Массовая доля элементов, %										
Марки стали	T	11		Никель	Cepa	Фосфор	Медь				
	Титан	Цирконий	Алюминий	не более							
10ГТ	0,015-0,035	-	0,02-0,05		0,0-10	0,030	0,30				
18Г2С	-	-	-	0,30	0,045	0,040	0,30				
32Г2Рпс	-	-	0,001-0,015	0,30	0,050	0,045	0,30				
35ГС	-	-	-	0,30	0,045	0,040	0,30				
25Г2С	-	-	-	0,30	0,045	0,040	0,30				
20ХГ2Ц	-	0,05-0,14	-	0,30	0,045	0,045	0,30				
80C	0,015-0,040	-	-	0,30	0,045	0,040	0,30				
23Х2Г2Т	0,02-0,08	-	0,015-0,050	0,30	0,045	0,045	0,30				
22Х2Г2АЮ	0,005-0,030	-	0,02-0,07	0,30	0,040	0,040	0,30				
22Х2Г2Р	0,02-0,08	-	0,015-0,050	0,30	0,040	0,040	0,30				
20Х2Г2СР	0,02-0,08	-	0,05-0,050	0,30	0,040	0,040	0,30				

 $^{2.3.1.~\}rm B$ стали марки $20 \rm X \Gamma 2 \rm II$ допускается увеличение массовой доли хрома до 1,7~% и замена циркония на 0,02-0,08~% титана. В стали марки $23 \rm X 2 \Gamma 2 T$ допускается замена титана на 0,05-0,10~% циркония. В этом случае в обозначении

стали марки $20 X \Gamma 2 \Pi$ вместо буквы Π ставят букву Π , стали марки $23 X 2 \Gamma 2 \Pi$ вместо буквы Π ставят букву Π .

В стали марки 32Г2Рпс допускается замена алюминия титаном или цирконием в равных единицах.

- 2.3.2. Массовая доля азота в стали марки $22X2\Gamma2A10$ должна составлять 0.015-0.030 %, массовая доля остаточного азота в стали марки $10\Gamma T$ не более 0.008 %.
- 2.3.3. Массовая доля бора в стали марок $22X2\Gamma2P$, $20X2\Gamma2CP$ и $32\Gamma2P$ пс должна быть 0,001-0,007 %. В стали марки $22X2\Gamma2A$ Ю допускается добавка бора 0,001-0,008 %.
- 2.3.4. Допускается добавка титана в сталь марок $18\Gamma 2C$, $25\Gamma 2C$, $35\Gamma C$ из расчета его массовой доли в готовом прокате 0.01-0.03 %, в сталь марки $35\Gamma C$ из расчета его массовой доли в готовом прокате, изготовленном в мотках, 0.01-0.06 %.
- 2.4. Отклонения по химическому составу в готовом прокате из углеродистых сталей по ГОСТ 380-88, из низколегированных сталей при соблюдении норм механических свойств по табл. 7. Минусовые отклонения по содержанию элементов (кроме титана и циркония, а для марки стали 20Х2Г2СР кремния) не ограничивают.

Таблица 7

Элементы	Предельные отклонения, %
Углерод	+0,020
Кремний	+0,050
Марганец	+0,100
Хром	+0,050
Медь	+0,050

Элементы	Предельные отклонения, %
Сера	+0,005
Фосфор	+0,005
Цирконий	+0,010
	-0,020
Титан	±0,010

Примечание. По согласованию изготовителя с потребителем сталь может изготовляться с другими отклонениями по содержанию хрома, кремния и марганца.

(Измененная редакция, Изм. № 3).

2.5. Арматурную сталь классов A-I (A240), A-II (A300), A-III (A400), A-IV (A600) изготовляют горячекатаной, класса A-V (A800) - с низкотемпературным отпуском, класса A-VI (A1000) - с низкотемпературным отпуском или термомеханической обработкой в потоке прокатного стана.

Допускается не проводить низкотемпературный отпуск стали классов A-V (A800) и A-VI (A1000) при условии получения относительного удлинения не менее 9 % и равномерного удлинения не менее 2 % при испытании в течение 12 ч после прокатки.

2.6. Механические свойства арматурной стали должны соответствовать нормам, указанным в табл. 8.

Таблипа 8

Класс	теку	едел чести ^Г т	сопрот	енное ивление ыву <i>s</i> ₆	Относительное удлинение d_5 ,	удлинение	Ударная вязкость при температуре -60 °C		Испытание на изгиб и в холодном состоянии	
арматурной стали	H/ MM ²	кгс/ мм ²	Н/мм ²	кгс/ мм ²	%	$d_r, \%$	МДж/ м ²	кгс×м/ см ²	(<i>c</i> - толщина отправки, <i>d</i> -	
	Не менее							диаметр стержня)		
A-I (A240)	235	24	373	38	25	-	-	-	180°; $c = d$	
A-II (A300)	295	30	490	50	19	-	-	-	180°; <i>c</i> = 3 <i>d</i>	
Ac-II (Ac300)	295	30	441	45	25	-	0,5	5	180°; $c = d$	
A-III (A400)	390	40	590	60	14	-	-	-	$90^{\circ}; c = 3d$	
A-IV (A600)	590	60	883	90	6	2	-	-	$45^{\circ}; c = 5d$	
A-V (A800)	785	80	1030	105	7	2	-	-	45°; $c = 5d$	
A-VI (A1000)	980	100	1230	125	6	2	-	-	45°; c = 5d	

Примечания:

1. По согласованию изготовителя с потребителем допускается не проводить испытание на ударную вязкость арматурной стали класса Ac-II (Ac300).

2. (Исключен, Изм. № 3).

- 3. Для арматурной стали класса A-IV (A600) диаметром 18 мм стали марки 80C норма изгиба в холодном состоянии устанавливается не менее 30°.
- 4. Для арматурной стали класса A-I (A240) диаметром свыше 20 мм при изгибе в холодном состоянии на 180° c=2d, класса A-II (A300) диаметром свыше 20 мм c=4d.
 - 5. В скобках указаны условные обозначения по пределу текучести.

(Измененная редакция, Изм. № 1, 3).

Для стали класса A-II (A300) диаметром свыше 40 мм допускается снижение относительного удлинения на 0,25 % на каждый миллиметр увеличения диаметра, но не более чем на 3 %.

Для стали класса Ac-II (Ac300) допускается снижение временного сопротивления до 426 МПа (43,5 кгс/мм 2) при относительном удлинении: d5 30 % и более.

Для стали марки 25Г2С класса A-III (A400) допускается снижение временного сопротивления до 560 МПа (57 кгс/мм 2) при пределе текучести не менее 405 МПа (41 кгс/мм 2), относительном удлинении: d5 не менее 20 %.

2.7. Статистические показатели механических свойств арматурной стали периодического профиля должны соответствовать приложению 1, с повышенной однородностью механических свойств - обязательному приложению 1 и табл. 9.

Таблица 9

		S		So		X/X		8.10 3.10	
Класс арматурной стали	Номер профиля	Для s _m (s _{0,2})	Для <i>s</i> в	Для s _m (s _{0,2})	Для s ₆	Для	Ппас	Для	Ппас
	МПа (кгс/ мм ²)		МПа мм	(кгс/ 1 ²)	Sm (S0,2)	Для ѕв	Sm (S0,2)	Для s ₆	
		Не более							
A-II (A300)	10-10	29(3)	29(3)	15(1,5)	15(1,5)	0,08	0,06	0,05	0,03
A-III (A400)	6-40	39(4)	39(4)	20(2,0)	20(2,0)	0,08	0,07	0,05	0,03
A-IV (A600)	10-32	69(7)	69(7)	39(4)	39(4)	0,09	0,07	0,06	0,05
A-V (A800)	10-32	78(8)	78(8)	49(5)	49(5)	0,09	0,07	0,06	0,05
A-VI (A1000)	10-22	88(9)	88(9)	49(5)	49(5)	0,08	0,07	0,05	0,04

Примечания:

 $^{1. \,} S$ - среднеквадратическое отклонение в генеральной совокупности испытаний;

 S_{o} - среднеквадратическое отклонение в партии-плавке;

[—] - среднее значение в генеральной совокупности испытаний;

- минимальное среднее значение в партии-плавке.

2. Для арматурной стали в мотках диаметром 6 и 8 мм допускается повышение норм по S и S_o на 4,9 МПа (0,5 кгс/мм²).

3. (Исключен, Изм. № 5).

Вероятность обеспечения механических свойств, указанных в табл. 8, должна быть не менее 0,95.

(Измененная редакция, Изм. № 3, 5).

2.8. На поверхности профиля, включая поверхность ребер и выступов, не должно быть раскатанных трещин, трещин напряжения, рванин, прокатных плен и закатов.

Допускаются мелкие повреждения ребер и выступов, в количестве не более трех на 1 м длины, а также незначительная ржавчина, отдельные раскатанные загрязнения, отпечатки, наплывы, следы раскатанных пузырей, рябизна и чешуйчатость в пределах допускаемых отклонений по размерам.

(Измененная редакция, Изм. № 2).

- 2.9. Свариваемость арматурной стали всех марок, кроме 80С, обеспечивается химическим составом и технологией изготовления.
 - 2.10. Углеродный эквивалент

$$C_{\perp \perp} \leq C + \frac{Mc}{5} + \frac{Si}{10}$$
 для свариваемой стержневой арматуры из низколегированной стали класса A-III (A400) должен быть не более 0,62.

3. ПРАВИЛА ПРИЕМКИ

3.1. Арматурную сталь принимают партиями, состоящими из профилей одного диаметра, одного класса, одной плавки-ковша и оформленными одним документом о качестве.

Масса партии должна быть до 70 т.

Допускается увеличивать массу партии до массы плавки-ковша.

3.2. Каждая партия сопровождается документом о качестве по ГОСТ 7566-81 с дополнительными данными:

номер профиля;

класс:

минимальное среднее значение T и среднеквадратические отклонения S_O в партии величин $s_M(s_{0,2})$ и s_{θ} ;

результаты испытаний на изгиб в холодном состоянии;

значения равномерного удлинения для стали класса A-IV (A600), A-V (A800), A-VI (A1000).

3.3. Для проверки размеров и качества поверхности отбирают:

при изготовлении арматурной стали в стержнях - не менее 5 % от партии;

при изготовлении и мотках - два мотка от каждой партии.

(Измененная редакция, Изм. № 3).

3.4. Для проверки химического состава пробы отбирают по ГОСТ 7565-81.

Массовую долю алюминия изготовитель определяет периодически, но не реже одного раза в квартал.

3.5. Для проверки на растяжение, изгиб и ударную вязкость от партии отбирают два стержня.

Для предприятия-изготовителя интервал отбора стержней должен быть не менее половины времени, затраченного на прокатку одного размера профиля одной партии.

(Измененная редакция, Изм. № 3).

3.6. При получении неудовлетворительных результатов испытаний хотя бы по одному из показателей повторные испытания проводят по ГОСТ 7566-81.

4. МЕТОДЫ ИСПЫТАНИЙ

- 4.1 Химический анализ стали проводят по ГОСТ 12344-88, ГОСТ 12348-78, ГОСТ 12350-78, ГОСТ 12352-81, ГОСТ 12355-78, ГОСТ 12356-81, ГОСТ 18895-81 или другими методами, обеспечивающими требуемую точность.
- 4.2. Диаметр и овальность профилей измеряют на расстоянии не менее 150 мм от конца стержня или на расстоянии не менее 1500 мм от конца мотка при массе мотка до 250 кг и не менее 3000 мм при массе мотка более 250 кг.
 - 4.3. Размеры проверяют измерительным инструментом необходимой точности.
- 4.4. От каждого отобранного стержня для испытания на растяжение, изгиб и ударную вязкость отрезают по одному образцу.
- 4.5. Отбор проб для испытания на растяжение, изгиб и ударную вязкость проводят по ГОСТ 7564-73.
 - 4.6. Испытание на растяжение проводят по ГОСТ 12004-81.
- 4.7. Испытание на изгиб проводят по ГОСТ 14019-80 на образцах сечением, равным сечению стержня.

Для стержней диаметром свыше 40 мм допускается испытание образцов, разрезанных вдоль оси стержня, на оправке, диаметром, уменьшенным вдвое по сравнению с указанным в табл. 4, с приложением усилия изгиба со стороны разреза.

- 4.8. Определение ударной вязкости проводят по ГОСТ 9454-78 на образцах с концентратором вида U типа 3 для стержней диаметром 12-14 мм и образцах типа 1 для стержней диаметром 16 мм и более. Образцы изготовляют в соответствии с требованиями ГОСТ 9454-78.
- 4.9. Допускается применять статистические и неразрушающие методы контроля механических свойств и массы профилей.
- 4.10. Кривизна стержней измеряется на длине поставляемого профиля, но не короче 1 м.
- 4.11. Определение статистических показателей механических свойств в соответствии с обязательным приложением 2.
- 4.12. Качество поверхности проверяют без применения увеличительных приборов.

4.10-4.12. (Введены дополнительно, Изм. № 3).

4.13. Измерение высоты поперечных выступов периодического профиля следует проводить по вертикальной оси поперечного сечения арматурного проката.

(Введен дополнительно, Изм. № 4).

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Упаковка, маркировка, транспортирование и хранение - по ГОСТ 7500-81 с дополнениями:

концы стержней из низколегированных сталей класса A-IV (A600) должны быть окрашены красной краской, класса A-V (A800) - красной и зеленой, класса A-VI (A1000) - красной и синей. Допускается окраска связок на расстоянии 0,5 м от концов;

стержни упаковывают в связки массой до 15 т, перевязанные проволокой или катанкой. По требованию потребителя стержни упаковывают в связки массой до 3 и 5 т;

на ярлыке, прикрепленном к каждой связке стержней, наносят принятое обозначение класса арматурной стали (например, A-III) или условное обозначение класса по пределу текучести (A400).

На связки краска наносится полосами шириной не менее 20 мм на боковую поверхность по окружности (не менее 1/2 длины окружности) на расстоянии не более 500 мм от торца.

На мотки краска наносится полосами шириной не менее 20 мм поперек витков с наружной стороны мотка.

На неупакованную продукцию краска наносится на торец или на боковую поверхность на расстоянии не более 500 мм от торца.

(Измененная редакция, Изм. № 3, 5).

ПРИЛОЖЕНИЕ 1 Обязательное

ТРЕБОВАНИЯ К СТАТИСТИЧЕСКИМ ПОКАЗАТЕЛЯМ МЕХАНИЧЕСКИХ СВОЙСТВ

1. Предприятие-изготовитель гарантирует потребителю средние значения временного сопротивления s_{θ} и предела текучести (физического s_{m} и условного $s_{0},2$) в генеральной совокупности - $\frac{1}{2}i$ и минимальные средние значения этих же показателей в каждой партии-плавке - $\frac{1}{2}i$; значения которых устанавливаются из условий:

$$i^{3}xi\delta p + t\times S$$

$$i > 0.9xi\delta p + 3S_0$$

где $xi\delta p$ - браковочные значения величин s_{θ} , s_{θ} , s_{θ} , s_{θ} , указанные в табл. 8 настоящего стандарта;

- t величина квантиля, принимаемая равной 2 для классов A-II (A300) и A-III (A400) и 1,64 для стержней классов A-IV (A600), A-V (A800) и A-VI (A 1000).
- 2. Контроль качества показателей механических свойств продукции на предприятии-изготовителе.
- 2.1. Требуемые показатели качества профилей обеспечивается соблюдением технологии производства и контролируются испытанием согласно требований п. 3.5, пп. 4.4-4.8.
- 2.2. Величины $\overline{\mathbf{x}}$, $\overline{\mathbf{x}}$, S и S_O устанавливаются в соответствии с результатами испытаний и положений приложения 2.
- 3. Контроль качества показателей механических свойств продукции на предприятии-потребителе.
- 3.1. Потребитель при наличии документа о качестве на продукцию высшей категории качества может не проводить испытания механических свойств.
- 3.2. При необходимости проверки механических свойств от каждой партии проводится испытание шести образцов, взятых из разных пакетов или мотков и от разных профилей, и по результатам проверяется выполнение условий

$$x_{min}^{3} = i - 1,64S_{o}$$

где $\overline{\mathbb{T}}_{\mathcal{B}}$ - среднее значение механических свойств по результатам испытаний шести образцов;

 t_{min} - минимальное значение результатов испытаний шести образцов.

3.3. Минимальные значения относительного удлинения d_5 и равномерного удлинения d_r должны быть не менее значений, приведенных в табл. 8.

(Измененная редакция, Изм. № 3).

ПРИЛОЖЕНИЕ 2 Обязательное

МЕТОДИКА

определения статистических показателей прочностных характеристик механических свойств проката горячекатаного для армирования железобетонных конструкций

Настоящая методика распространяется на горячекатаный, ускоренноохлажденный, термомеханически и термически упрочненный прокат периодического профиля, изготовленного в мотках или стержнях.

Методика применяется при оценке надежности механических свойств в каждой партии-плавке и стали в целом, контроля стабильности технологического процесса.

- 1. Для определения статистических показателей механических свойств (предела текучести физического s_m или условного s_0 , s_0 , временного сопротивления разрыву s_0) используются контрольные результаты испытаний, начинаемые генеральными совокупностями.
- 2. Соответствие механических свойств проката требованиям нормативнотехнической документации определяется на основании статистической обработки результатов испытаний, образующих выборку из генеральной совокупности. Все выводы, результаты и заключения, сделанные на основании выборки, относятся ко всей генеральной совокупности.
- 3. Выборка совокупность результатов контрольных испытаний, образующих информационный массив, подлежащий обработке.

В выборку входят результаты сдаточных испытаний проката одного класса, одной марки и способа выплавки, прокатанной на один или группы близких профилеразмеров.

- 4. Выборка, на основании которой производится расчет статистических показателей, должна быть представительной и охватывать достаточно длительный промежуток времени, но не менее трех месяцев, в течение которого технологический процесс не изменяется. При необходимости промежуток времени для выборки можно увеличить. Проверка однородности выборки по нормативнотехнической документации.
 - 5. Количество партий-плавок в каждой выборке должно быть не менее 50.

- 6. При формировании выборки должно соблюдаться условие случайного отбора проб от партии-плавки. Оценка анормальности результатов испытаний проводится по нормативно-технической документации.
- 7. При статистической обработке определяется среднее значение \overline{X} , среднее квадратическое отклонение S каждой выборки (генеральной совокупности), среднее квадратическое отклонение внутри партии-плавки S_O , а также среднее квадратическое отклонение плавочных средних S_I . Величина S_I определяется по формуле

$$S_1' = \sqrt{S^2 - S_2^2}$$

Величины $\overline{\mathbf{x}}$, S определяются по нормативно-технической документации.

- 8. Проверку стабильности характеристик $\overline{\mathbb{Z}}$ и S проводят в соответствии с ОСТ 14-34-78.
- 9. Величина S_0 определяется для ускоренно-охлажденной, термомеханически и термически упрочненной арматурной стали только экспериментальным методом, для горячекатаной экспериментальным методом и методом размаха по формуле

$$N_o^2 = \frac{\overline{\varpi}^2 + N_p^2}{2}$$
, где

 $\overline{\mathbf{n}}$ и $S_{\mathcal{V}}$ соответственно среднее значение и среднее квадратическое отклонение распределения размаха по двум испытаниям от партии. Минимальное значение $S_{\mathcal{O}}$ равно 1.

- 10. Определение величины S_O экспериментальным методом производится не менее чем на двух плавках для каждой марки стали, класса и профилеразмера проката путем случайного отбора не менее 100 проб от каждой плавки.
- 11. Величина минимального среднего значения прочностных характеристик s_m (s_0 , s_0), s_0) в каждой партии-плавке $\frac{1}{2}$ определяется из условия $\frac{1}{3}i = \frac{1}{3} t \times S_1$, где t величина квантиля 1,64 для вероятности 0,95.

12. Минимальное значение результатов испытаний на растяжение двух образцов (n=2) каждой партии, подвергаемой контролю, должно быть не менее x_{min} , определяемого по формуле

$$x_{min}^{3} = 1.64S_{o}$$
.

13. Для обеспечения гарантии потребителю механических свойств должны удовлетворяться следующие условия:

$$=_{i} {}^{3}x_{i}\delta p + 1,64S;$$

$$\sum_{i=0}^{3} 0.9x_{i}\delta p + 3S_{o},$$

где $x_i \delta p$ - браковочное значение s_m ($s_0, 2$) и s_6 , указанное в соответствующей нормативно-технической документации.

(Введено дополнительно, Изм № 3).

СОДЕРЖАНИЕ

- 1. Классификация и сортамент
- 2. Технические требования
- 3. Правила приемки
- 4. Методы испытаний

5. Упаковка, маркировка, транспортирование и хранение

Приложение 1 обязательное Требования к статистическим показателям механических свойств

Приложение 2 обязательное Методика определения статистических показателей прочностных характеристик механических свойств проката горячекатаного для армирования железобетонных конструкций

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР, Госстроем СССР

РАЗРАБОТЧИКИ

- Н. М. Воронцов, канд. техн. наук; И. С. Гринь, канд. техн. наук; К. Ф. Перетятько; Г. И. Снимщикова; Л. Г. Больших, Е. Д. Гавриленко; канд. техн. наук; К. В. Михайлов, д-р техн. наук; С. А. Мадатян, канд. техн. наук; Н. М. Мулин, канд. техн. наук; В. З. Мешков, канд. техн. наук; Б. П. Горячев, канд. техн. наук; Б. Н. Фридлянов; В. И. Петина
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 17.12. № 4800
- 3. Взамен ГОСТ 5.1459-72, ГОСТ 5781-75

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение ИТД, на который дана ссылка	Номер пункта
ГОСТ 380-88	2.3, 2.4
<u>ΓΟCT 2590-88</u>	1.6
ГОСТ 7564-73	4.5
ГОСТ 7565-81	3.4

Обозначение ИТД, на который дана ссылка	Номер пункта
ГОСТ 7566-81	3.2, 3.6, 5.1
<u>ΓΟCT 9454-78</u>	4.8
<u>ΓΟCT 12004-81</u>	4.6
ГОСТ 12344-88	4.1
ГОСТ 12348-78	4.1
ГОСТ 12350-78	4.1
ГОСТ 12352-81	4.1
ГОСТ 12355-78	4 1
<u>ГОСТ 12356-81</u>	4.1
<u>ΓΟCT 14019-80</u>	4.7
ГОСТ 18895-81	4.1
OCT 14-34-78	Приложение 2

^{5.} Ограничение срока действия снято по решению Межгосударственного совета по стандартизации, метрологии и сертификации (протокол 3-93 от 17.02.93).

6. ПЕРЕИЗДАНИЕ (декабрь 1993 г.) с Изменениями № 1, 2, 3, 4, 5, утвержденными в феврале 1984 г., июне 1987 г., декабре 1987 г., октябре 1989 г, в декабре 1990 г. (ИУС 5-84, 11-87, 3-88, 1-90, 3-91).